

COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

FMS R1B2 Detailed Design

Contract DBM-9713-NMS
TSR # 9803444

Document # M303-DS-003R0

July 18, 2000
By

Computer Sciences Corporation and PB Farradyne Inc

 FMS R1B2 Detailed Design Rev.0 11/13/00 i

Revision Description Pages Affected Date

0 Initial Release All July 18, 2000

 FMS R1B2 Detailed Design Rev.0 11/13/00 ii

Table of Contents

 1 Introduction ...1-1
1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Design Process ..1-1

1.5 Design Tools ..1-2

1.6 Work Products..1-2

2 Key Design Concepts..2-1
2.1 Service Application Module ..2-1

2.2 Module Initialization..2-2

2.3 Port Management...2-2

2.3.1 Port Lists ..2-2

2.3.2 Wait List ...2-2

2.4 Port Reclaiming..2-3

2.5 Port Implementations ..2-3

2.6 Port Locator..2-4

2.7 Protocol Handlers...2-5

2.8 Database ..2-6

3 Package Designs...3-1
3.1 Field Communications (IDL) ..3-1

3.1.1 CommPortConfig (Class)...3-2

3.1.2 ConnectFailure (Class)...3-2

3.1.3 DataBits (Class)..3-2

3.1.4 DisconnectException (Class) ...3-2

3.1.5 FlowControl (Class) ...3-2

3.1.6 DataPort (Class) ...3-2

3.1.7 GetPortTimeout (Class)..3-2

3.1.8 ModemPort (Class) ..3-2

 FMS R1B2 Detailed Design Rev.0 11/13/00 iii

3.1.9 NoPortsFound (Class) ..3-2

3.1.10 Port (Class) ...3-3

3.1.11 Parity (Class) ..3-3

3.1.12 PortManager (Class) ...3-3

3.1.13 UniquelyIdentifiable (Class)...3-3

3.1.14 PortType (Class) ...3-3

3.1.15 Priority (Class)..3-3

3.1.16 DirectPort (Class) ...3-3

3.1.17 StopBits (Class) ..3-3

3.1.18 DataPortIOException (Class) ...3-3

3.1.19 ModemInitFailure (Class)...3-4

3.1.20 ModemConnectFailure (Class)...3-4

3.1.21 ModemNotResponding (Class) ..3-4

3.1.22 ModemResponseCode (Class)..3-4

3.1.23 PortOpenFailure (Class) ...3-4

3.1.24 PortStatus (Class) ...3-4

3.2 Field Communications Module...3-5

3.2.1 Classes..3-5
3.2.1.1 CHART2Service (Class) ..3-5

3.2.1.2 DataPort (Class) ...3-5

3.2.1.3 DirectPort (Class)...3-6

3.2.1.4 DirectPortConfig (Class)..3-6

3.2.1.5 DirectPortImpl (Class) ...3-6

3.2.1.6 FieldCommunicationsModule (Class)..3-6

3.2.1.7 InstallablePort (Class) ..3-6

3.2.1.8 ModemPortConfig (Class) ...3-7

3.2.1.9 PortConfig (Class)..3-7

3.2.1.10 FieldCommunicationsModuleDB (Class) ...3-7

3.2.1.11 java.util.Vector (Class) ..3-7

3.2.1.12 ModemPort (Class)..3-7

3.2.1.13 Port (Class) ..3-7

3.2.1.14 PortManagerImpl (Class) ..3-7

3.2.1.15 ServiceApplicationModule (Class)..3-7

 FMS R1B2 Detailed Design Rev.0 11/13/00 iv

3.2.1.16 java.util.Hashtable (Class)...3-8

3.2.1.17 javax.comm.SerialPortEventListener (Class)..3-8

3.2.1.18 FieldCommunicationsProperties (Class) ...3-8

3.2.1.19 java.util.Properties (Class)...3-8

3.2.1.20 java.util.Timer (Class) ...3-8

3.2.1.21 PortReclaimer (Class)..3-8

3.2.1.22 java.util.TimerTask (Class) ...3-8

3.2.1.23 javax.comm.SerialPort (Class) ..3-8

3.2.1.24 ModemPortImpl (Class) ..3-9

3.2.1.25 PortManager (Class) ..3-9

3.2.1.26 ServiceApplication (Class) ..3-9

3.2.1.27 WaitListEntry (Class) ..3-9

3.2.2 Sequence Diagrams ..3-10
3.2.2.1 DirectPortImpl:close (Sequence Diagram) ..3-10

3.2.2.2 DirectPortImpl:Connect (Sequence Diagram) ...3-11

3.2.2.3 DirectPortImpl:disconnect (Sequence Diagram)..3-12

3.2.2.4 DirectPortImpl:init (Sequence Diagram) ...3-13

3.2.2.5 DirectPortImpl:open (Sequence Diagram)...3-14

3.2.2.6 DirectPortImpl:receive (Sequence Diagram) ...3-15

3.2.2.7 DirectPortImpl:Send (Sequence Diagram)...3-17

3.2.2.8 DirectPortImpl:shutdown (Sequence Diagram) ...3-18

3.2.2.9 FieldCommunicationsModule:initialize (Sequence Diagram)3-19

3.2.2.10 FieldCommunicationsModule:Shutdown (Sequence Diagram)3-21

3.2.2.11 ModemPortImpl:Connect (Sequence Diagram) ..3-22

3.2.2.12 ModemPortImpl:disconnect (Sequence Diagram)...3-24

3.2.2.13 ModemPortImpl:init (Sequence Diagram) ..3-25

3.2.2.14 ModemPortImpl:shutdown (Sequence Diagram) ..3-26

3.2.2.15 PortManagerImpl:getPort (Sequence Diagram) ..3-27

3.2.2.16 PortManagerImpl:ReclaimPorts (Sequence Diagram) ..3-28

3.2.2.17 PortManagerImpl:ReleasePort (Sequence Diagram)...3-29

3.2.2.18 PortManagerImpl:RelinquishPort (Sequence Diagram)..3-30

3.2.2.19 PortManagerImpl:retrieveAvailablePort (Sequence Diagram)3-31

3.3 DMS Protocols ..3-32

3.3.1 Classes..3-32

 FMS R1B2 Detailed Design Rev.0 11/13/00 v

3.3.1.1 Protocol Handler Classes ...3-32

3.3.1.2 Support Classes ..3-35

3.3.2 Sequence Diagrams ..3-39
3.3.2.1 DMSProtocols:TypicalSetMessage (Sequence Diagram)..3-39

3.4 Device Utility...3-41

3.4.1 Classes..3-41

3.4.2 Sequence Diagrams ..3-43
3.4.2.1 PortLocator:getPort (Sequence Diagram) ..3-43

3.4.2.2 PortLocator:ReleasePort (Sequence Diagram)...3-44

Bibliography
Acronymns
Appendix A – Glossary

 FMS R1B2 Detailed Design Rev.0 11/13/00 vi

List of Figures

Figure 1. Service Application Module (Class Diagram)..2-1

Figure 2. Port Implementation (Class Diagram) ..2-3

Figure 3. FieldCommunications (Class Diagram)..3-1

Figure 4. FieldCommunicationsModule (Class Diagram) ...3-5

Figure 5. DirectPortImpl:close (Sequence Diagram)...3-10

Figure 6. DirectPortImpl:Connect (Sequence Diagram)..3-11

Figure 7. DirectPortImpl:disconnect (Sequence Diagram) ..3-12

Figure 8. DirectPortImpl:init (Sequence Diagram)..3-13

Figure 9. DirectPortImpl:open (Sequence Diagram) ...3-14

Figure 10. DirectPortImpl:receive (Sequence Diagram)..3-16

Figure 11. DirectPortImpl:Send (Sequence Diagram) ...3-17

Figure 12. DirectPortImpl:shutdown (Sequence Diagram)..3-18

Figure 13. FieldCommunicationsModule:initialize (Sequence Diagram)3-20

Figure 14. FieldCommunicationsModule:Shutdown (Sequence Diagram)3-21

Figure 15. ModemPortImpl:Connect (Sequence Diagram) ...3-23

Figure 16. ModemPortImpl:disconnect (Sequence Diagram)..3-24

Figure 17. ModemPortImpl:init (Sequence Diagram) ...3-25

Figure 18. ModemPortImpl:shutdown (Sequence Diagram) ...3-26

Figure 19. PortManagerImpl:getPort (Sequence Diagram) ...3-27

Figure 20. PortManagerImpl:ReclaimPorts (Sequence Diagram) ...3-28

Figure 21. PortManagerImpl:ReleasePort (Sequence Diagram)..3-29

Figure 22. PortManagerImpl:RelinquishPort (Sequence Diagram)...3-30

Figure 23. PortManagerImpl:retrieveAvailablePort (Sequence Diagram)3-31

Figure 24. DMSProtocols (Class Diagram) ...3-32

Figure 25. ProtocolSupportClasses (Class Diagram)...3-35

Figure 26. DMSProtocols:TypicalSetMessage (Sequence Diagram) ..3-40

Figure 27. DeviceUtility (Class Diagram) ...3-41

Figure 28. PortLocator:getPort (Sequence Diagram)...3-43

Figure 29. PortLocator:ReleasePort (Sequence Diagram) ...3-44

FMS R1B2 Detailed Design Rev.0 1-1 11/13/00

1 Introduction

1.1 Purpose
This document describes the detailed design of the FMS subsystem for Release 1, Build 2. This
design provides the details for the high level design presented in document M303-DS-003R0,
“FMS R1B2 High Level Design.”

1.2 Objectives
The main objective of this design is to provide software developers with details regarding the
implementation of the software included in the FMS subsystem for R1B2. This document also
serves to provide documentation to those outside the software development community to show
how the field communications requirements of CHART II are being accounted for in the
software design.

1.3 Scope
This design is limited to Release 1, Build 2 of the FMS subsystem and to the field
communications specific requirements of the CHART II System Requirements Specification.
Although the FMS R1B2 High Level Design includes the design for incorporating HAR and
SHAZAM device communications into the FMS subsystem, this detailed design does not address
communications for these devices. The detailed design for these devices is planned for the R1B3
release.

1.4 Design Process
As in the high level design, object-oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), an industry standard for diagramming object-oriented
designs.

In the high level design, system interfaces were identified and specified. These interfaces were
partitioned into logical groupings of packages. This design serves to fill in the details necessary
to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its
own class diagram and sequence diagrams for major operations included in the package’s
interfaces. Additionally, packages needed for implementation but not present in the high level
design are included in this design, with each of these also having its own class diagram and
sequence diagrams. Packages are also included for third party software that is needed by the
CHART II software, such as the ORB and Java classes. Only classes and methods shown on the
sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward
implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

FMS R1B2 Detailed Design Rev.0 1-2 11/13/00

1.5 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the CHART II project, R1B2 configuration, System
Design phase. The following system versions contain designs relating to the FMS Subsystem:

• = System Interfaces
This package contains a class diagram named FieldCommunications that specifies
the IDL for the FMS subsystem. This IDL will be used to generate the code for
the Field Communications package that contains the code that allows objects to be
accessed remotely via an ORB.

• = Field Communications Module
This package contains the design for the implementation of the objects and
supporting classes to serve the interfaces defined in the Field Communications
package.

• = DMS Protocols
This package contains the design of Protocol Handlers for DMS devices. These
classes utilize the DataPort interface specified in the FieldCommunications
package to perform communication sequences for a specific device type and
model.

• = Device Utility
This package was created as part of the R1B2 CHART II Servers Detailed Design
and contains utility classes that are used by device objects. The PortLocator class
has been added to this package because device objects will also use it.

• = Java Classes
This package contains classes that are part of the Java programming language
referred to by this design.

• = CORBA Utilities
This package contains CORBA classes that are referred to by this design.

1.6 Work Products
This design contains the following work products:

• = A UML Class diagram for each package showing the low level software objects that
will allow the system to implement the interfaces identified in the high level design.

• = UML Sequence diagrams for non-trivial operations of each interface identified in the
high level design. Additionally, sequence diagrams are included for non-trivial
methods in classes created to implement the interfaces. Operations that are considered
trivial are operations that do nothing more than return a value or a list of values and
where interaction between several classes is not involved.

FMS R1B2 Detailed Design Rev.0 2-1 11/13/00

2 Key Design Concepts

2.1 Service Application Module
The FMS subsystem utilizes the CHART II service application framework to serve its CORBA
objects. The FieldCommunicationsModule is a CHART II service application module that can be
included in a Chart2Service application. The Chart2Service provides the main entry point for a
service application and through its use of a ServiceApplication utility provides many services
that are useful for applications that serve CORBA objects.

ServiceApplication

CHART2Service
* 1

ServiceApplicationModule

FieldCommunicationsModule

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
getIDGenerator():IdentifierGenerator

main(string[] args):voidinitialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

Figure 1. Service Application Module (Class Diagram)
The FieldCommunicationsModule takes advantage of the services provided by the service
application framework, such as publication and clean up of objects in the CORBA trader, access
to the ORB’s POA, access to a DB connection manager object and an IdentifierGenerator.
Furthermore, because the FieldCommunicationsModule is a standard CHART II service
application module, it can be deployed in the same Java virtual machine as other service
application modules, providing efficiency in calls between objects in these modules. This would
be desirable for an object that has heavy communications usage, such as an automated data
recorder (ADR).

FMS R1B2 Detailed Design Rev.0 2-2 11/13/00

2.2 Module Initialization
The FieldCommunicationsModule, like all CHART II service application modules, is initialized
when the Chart2Service application is started. The FieldCommunicationsModule creates a single
PortManager object, activates the object to make it available for CORBA requests, and publishes
the object in the CORBA trader (using the service application’s registerObject() method).

When the PortManager object is created, it creates Port objects for each communication port for
which it is configured to provide access. To keep the PortManager code generic and not
dependent on any specific type of Port object, the PortManager uses the InstallablePort interface
to instantiate and initialize port objects.

Part of the configuration information for a Port is the name of the class that provides the
implementation for the specific type of communications port. The PortManager instantiates each
port object using the specified class name. Because each Port object, regardless of its derived
type, must support the InstallablePort interface, the PortManager can call the init() method on
any port object, regardless of the derived type. When a Port’s init() method is called it performs
initialization that is specific to the derived type of the object.

2.3 Port Management
The PortManager object manages access to Port objects through lists that group ports according
to their type. When the demand for ports from a PortManager is greater than its supply, the
PortManager uses a wait list to provide prioritized access to the next available port.

2.3.1 Port Lists
The PortManager uses three separate lists to store the Port objects that it manages. The free list is
used to store ports that are currently free to be given to a client when requested. The in-use list is
used to store ports that have been given to a client for use but not yet released. A third list, the
marginal list, is used to store ports that are free, but have experienced an error during their last
use.

When a port is requested for use, the PortManager first looks for a free port in its free list. If a
port is not available, the PortManager looks for a port in its marginal list. If there are no ports in
the marginal list, the PortManager adds an entry to the wait list and waits the specified amount of
time for the wait list to notify that a port has become available.

2.3.2 Wait List
The wait list is used to return ports to requesters based on their priority and the time of their
request. All requests of the same priority are served in a first come, first served order. When a
port is not immediately available upon request, the PortManager adds an entry to the wait list and
executes a wait on that object. When a port is released, the PortManager notifies only the
highest priority entry in the wait list and removes the entry from the wait list.

FMS R1B2 Detailed Design Rev.0 2-3 11/13/00

2.4 Port Reclaiming
The PortManager periodically checks each port in the in-use list to determine if the port has
exceeded its inactivity threshold. If the port is deemed to be inactive, the PortManager
deactivates the object in the ORB that disables the port for future use by the client that holds a
reference to the port. The port manager then removes the port from the in-use list and adds the
port to free or marginal list, as appropriate. Lastly the PortManager notifies the wait list that a
port is available.

The PortManager uses a timer object to periodically execute the PortReclaimer timer task, which
delegates its processing to the PortManager, thus allowing all port management to be done by the
PortManager. The period used for the timer is configurable and exists in the
FieldCommunicationsProperties object.

2.5 Port Implementations
The R1B2 release of CHART II requires only modem communications to field devices (ISDN
and POTS), however the FMS subsystem is also implementing the DirectPort interface because
its code is reusable by the implementation of the ModemPort, which inherits all of the direct
port’s functionality. Existence of this direct port implementation provides greater options for
testing the FMS subsystem with a limited number of ISDN and POTS lines.

javax.comm.SerialPort

DirectPortImpl

ModemPortImpl
ModemPort

DirectPort

DataPort

Port

InstallablePort

The items on the
left of this line are
CORBA interfaces.

The items to the right
of this line are implementation
specific classes.

1
1

open():void
close():void
isOpen():boolean
&setConfig(byte[] id, String m_name, int inactivityTimeMillis,
 org.omg.PortableServer.Servant, String commPortName):void

String m_name;
int m_inactivityTimeMillis;
int m_lastUseTime;
javax.comm.CommPortIdentifier m_portIdentifier;
byte[] m_id;
org.omg.PortableServer.Servant m_servant;
String m_commPortName;
boolean m_marginal;

getServant():org.omg.PortableServer.Servant

String m_modemInitString;
org.omg.PortableServer.Servant m_servant;connect(CommPortConfig config,

 String phoneNo):void

connect(CommPortConfig config):void

send(byte[] data):void
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

getStatus():PortStatus
disconnect():void

init(PortConfig config, long inactivityTime) :void
isInactive():boolean
shutdown():boolean
getServant():org.omg.PortableServer.Servant

Figure 2. Port Implementation (Class Diagram)

FMS R1B2 Detailed Design Rev.0 2-4 11/13/00

The DirectPortImpl class implements the DirectPort connect method to open a serial port on the
PC (e.g. COM1) and also provides methods to send and receive bytes on the serial port. The
ModemPortImpl simply provides a connect method that first calls its base class connect method
to open the serial port and then uses the base class send and receive methods to interact with the
modem to establish a connection. After a connection is established, the base class send and
receive methods allow the user of the port to exchange data with the remote device.

2.6 Port Locator
The PortLocator is a utility class that implements fail over for clients of PortManagers. The
PortLocator is provided an ordered list of PortManagers during its creation. The PortLocator
provides a getPort method with the same signature as an actual PortManager. The getPort
method is responsible for finding object references in the CORBA Trader and attempting to get a
port from the first port manager on the list. When the port is returned from the PortManager, the
PortLocator returns the port to its caller and stores a reference to the PortManager from which
the port was retrieved. When the PortLocator is requested to release the port, the PortLocator
calls the releasePort method of the PortManager where the port was earlier retrieved.

In the event that a call from the PortLocator to the PortManager’s getPort method should fail, the
PortLocator executes fail over processing based on the fail over options set in the PortLocator.
The following error types may occur:

1. The PortManager cannot be called to get a port. The PortManager may be down or a
network problem may exist that prevents the call from being delivered.

2. The PortManager gets the request for a port but the port manager does not have any
ports of the specified type under its management.

3. The PortManager has a greater demand for the specified port type than it has supply and
a port does not become available within the timeout period specified in the getPort call.

4. An unexpected error is encountered within the PortManager processing.

Settings exist in the PortLocator for each of the above error conditions to determine whether or
not the PortLocator should fail over. When the PortLocator has encountered an error for which it
is set to fail over, the PortLocator repeats its attempt to retrieve a port using the next
PortManager in its list.

Additional settings exist in the PortLocator to allow retries to be done on the first PortManager
prior to failing over to another PortManager. The number of retries is specified as well as the
failure conditions for which retries should be done. Note that retries are only done for the first
PortManager in the list. After fail over to secondary PortManagers has begun, retries are not
used.

FMS R1B2 Detailed Design Rev.0 2-5 11/13/00

2.7 Protocol Handlers
Protocol handler implementations vary based on the protocol that they support. Some general
concepts apply to all DMS protocol handlers. All protocol handlers perform their
communications using a DataPort object, which is a port (direct connect or modem) that allows
binary data to be sent and received. All protocol handlers must handle the task of converting
DMS messages to and from the MULTI format.

When a message is to be set on a DMS, it is passed to the protocol handler in MULTI format.
The protocol handler must interpret the MULTI to determine which characters to put at each
location on the sign display and handle multiple page messages, page timing, etc. While much of
this task is specific to the protocol being implemented, a common utility class named
MultiConverter is used to parse a MULTI string and notify a listener of the high level constructs
in the message, such as new line, new page, and justification. Each DMS protocol handler
implements the MultiParseListener interface so it can be directly notified of the format specified
by a MULTI Message.

When the status is retrieved from a DMS, the protocol handler must return the sign’s current
message in MULTI format. Because the DMSs supported by R1B2 do not support MULTI
directly, protocol handlers must convert the message retrieved from the sign from the typical
byte array(s) into MULTI. To prevent each protocol handler from having to code this
functionality, an intermediate format has been defined in the utility class DMSHardwarePage.
This class represents one page of the physical DMS display and contains a two dimensional array
whose size matches the physical row/column size of the DMS. Protocol handlers fill these page
objects with the exact text retrieved from the DMS (including blanks). After the current message
is put in the DMSHardwarePage format, it can be passed to the MultiConverter to convert the
text as laid out on the DMS into MULTI, including justification tags.

FMS R1B2 Detailed Design Rev.0 2-6 11/13/00

2.8 Database
The database requirements for FMS R1B2 are minimal. The database is only used for start-up
configuration data. A table exists for generic port information to allow the PortManager to
generically instantiate the port objects. A table exists for each specific port type (DirectPort and
ModemPort) to provide configuration values that are specific to the port type. The following
schema is used:

Table Port
Key Column Name Column Type

* Port_ID CHAR(32)

 Port_Name VARCHAR(128)

 Port_Type NUMBER(5)

 Class_Name VARCHAR(128)

Table DirectPort
Key Column Name Column Type

* Port_ID CHAR(32)

 Com_Port_Name VARCHAR(64)

Table ModemPort
Key Column Name Column Type

* Port_ID CHAR(32)

 Com_Port_Name VARCHAR(64)

 Init_String VARCHAR(64)

At startup, the PortManager reads all rows from the Port table and instantiates an object for each
row using the class name specified. Each port object is initialized, at which time it reads its type
specific data from the appropriate table (DirectPort or ModemPort) and performs other
initialization processing.

FMS R1B2 Detailed Design Rev.0 3-1 11/13/00

3 Package Designs

3.1 Field Communications (IDL)
This diagram shows system interfaces relating to field communications. These interfaces,
typedefs, and enums specify the IDL for the FieldCommunications package.

PortOpenFailure

ModemNotRespondingModemConnectFailure ModemResponseCodeModemInitFailure

NoPortsFound

DisconnectException

DirectPortModemPort

DataBits StopBitsCommPortConfig

ConnectFailureGetPortTimeout

Other port types
such as VoicePort

DataPort

Port

PortType Priority Parity

PortManager

FlowControl

DataPortIOException

PortStatus

UniquelyIdentifiable

*1

string reason

send(byte[] data):void
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

connect(CommPortConfig config,
 String phoneNo):void

connect(CommPortConfig config):void

PARITY_EVEN
PARITY_ODD
PARITY_NONE

PRIORITY_POLLING
PRIORITY_ON_DEMAND

ISDN_MODEM
POTS_MODEM
DIRECT_RS232

getStatus():PortStatus
disconnect():void

getPort(PortType, int maxWaitMillis, Priority):Port
releasePort(Port):void

string reason

FLOWCONTROL_NONE
FLOWCONTROL_RTS_CTS
FLOWCONTROL_XON_XOFF

DATABITS_5
DATABITS_6
DATABITS_7
DATABITS_8

STOPBITS_1
STOPBITS_2
STOPBITS_1_5

int m_baudRate
DataBits m_dataBits
StopBits m_stopBits
Parity m_parity
FlowControl m_flowControl

string reasonstring modemCmd;
ModemResponseCode rspCode;

MODEM_RSP_OK
MODEM_RSP_CONNECT
MODEM_RSP_RING
MODEM_RSP_NO_CARRIER
MODEM_RSP_ERROR
MODEM_RSP_CONNECT_1200
MODEM_RSP_NO_DIAL_TONE
MODEM_RSP_BUSY
MODEM_RSP_NO_ANSWER

string modemCmd;
ModemResponseCode rspCode;

string reason;

STATUS_OK
STATUS_MARGINAL
STATUS_FAILED
STATUS_DISABLED-future

Figure 3. FieldCommunications (Class Diagram)

FMS R1B2 Detailed Design Rev.0 3-2 11/13/00

3.1.1 CommPortConfig (Class)
This structure is used to pass COM port configuration values during a connection request.

3.1.2 ConnectFailure (Class)
This exception is a catchall for exceptions that do not fit in a more specific exception that can be
thrown during a connection attempt.

3.1.3 DataBits (Class)
This enumeration defines the valid values for data bits that may be set in a CommPortConfig
structure.

3.1.4 DisconnectException (Class)
This exception is thrown when an error is encountered while disconnecting. There is no action
that can be taken by the catch handler for this exception except to warn the user. The port will be
closed and should be released as normal even if this exception is caught.

3.1.5 FlowControl (Class)
This enumeration defines the valid types of flow control that may be set in a CommPortConfig
structure.

3.1.6 DataPort (Class)
A DataPort is a port that allows binary data to be sent and received. Ports of this type support a
receive method that allows a chunk of all available data to be received. This method prevents
callers from having to issue many receive calls to parse a device response. Instead, this receive
call returns all available data received within the timeout parameters. The caller can then parse
the data within a local buffer. Using this mechanism, device command and response should
require only one call to send and one call to receive.

3.1.7 GetPortTimeout (Class)
This class is an exception that is thrown by a PortManager when a request to acquire a port of a
given type cannot be fulfilled within the timeout specified.

3.1.8 ModemPort (Class)
A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN
and POTS modems can be implemented under this interface.

3.1.9 NoPortsFound (Class)
This exception is thrown when a port is requested from a PortManager that does not have any of
the requested type of port (available or in-use).

FMS R1B2 Detailed Design Rev.0 3-3 11/13/00

3.1.10 Port (Class)
A Port is an object that models a physical communications resource. Derived interfaces specify
various types of ports. All ports must be able to supply their status when requested.

3.1.11 Parity (Class)
This enumeration defines the valid values for parity that may be set in a CommPortConfig
structure.

3.1.12 PortManager (Class)
A PortManager is an object that manages shared access to communications port resources. The
getPort method is used to request the use of a port from the PortManager. Requests for ports
specify the type of port needed, the priority of the request, and the maximum time the requester
is willing to wait if a port is not immediately available. When the port manager returns a port, the
requester has exclusive use of the port until the requester releases the port back to the
PortManager or the PortManager reclaims the port due to inactivity.

3.1.13 UniquelyIdentifiable (Class)
This interface will be implemented by all classes that are to be identifiable within the system.
The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.1.14 PortType (Class)
This enumeration defines the types of ports that may be requested from a PortManager.

3.1.15 Priority (Class)
This enumeration specifies the priority levels used when requesting a port from a PortManager.
ON_DEMAND is given higher priority than POLLING.

3.1.16 DirectPort (Class)
A DirectPort is a Port that is directly connected to the target of communications. The connect
call needs only to open the communications port.

3.1.17 StopBits (Class)
This enumeration defines the valid values for stop bits that may be set in a CommPortConfig
structure.

3.1.18 DataPortIOException (Class)
This exception is used to indicate an Input/Output error has occurred.

FMS R1B2 Detailed Design Rev.0 3-4 11/13/00

3.1.19 ModemInitFailure (Class)
This exception is thrown when there is an error initializing the modem during a connection
attempt on a ModemPort.

3.1.20 ModemConnectFailure (Class)
This exception is thrown when there is an error establishing a remote connection via a modem
during a connection attempt on a ModemPort. This exception is generated when there is an
unfavorable result to the ATDT command on the modem.

3.1.21 ModemNotResponding (Class)
This exception is thrown when there is a failure to command a modem because the modem is not
responding to commands.

3.1.22 ModemResponseCode (Class)
This enum defines the result codes for a standard modem.

3.1.23 PortOpenFailure (Class)
This exception is thrown if there is an error opening the port while attempting a connection. This
exception would most likely only occur if there is another application accessing the physical com
port, which would be true if debugging activities were being done on a port while the
FieldCommunications service is still running.

3.1.24 PortStatus (Class)
This enumeration specifies the values used to represent a Port’s status. OK signifies the port is
working properly. MARGINAL signifies errors have been experienced during recent use of the
port. FAILED indicates the port is not working at all.

FMS R1B2 Detailed Design Rev.0 3-5 11/13/00

3.2 Field Communications Module

3.2.1 Classes

1

javax.comm.SerialPortEventListener

DirectPortImpl

1

java.util.Timer PortReclaimer

java.util.TimerTask

*

1

1

1

1

11

1

creates

javax.comm.SerialPort

1*

1

java.util.Properties

2

java.util.Vector

java.util.Hashtable
Keyed on port type. One
vector for each port type.

1

1

*

1

1

1

FieldCommunicationsModule

ServiceApplicationModule

java.util.Hashtable

DirectPortConfig

*

DirectPort

1

ModemPortImpl

1
ModemPort

CHART2Service

FieldCommunicationsModuleDB

1

1

ServiceApplication

InstallablePort

1

1

*

PortManagerImpl

Port

DataPort

1

3

PortManager

One each for free, in-use,
and marginal ports. Each hash table
keeps a vector for each port type.

WaitListEntry
java.util.Vector

*1

PortConfig

ModemPortConfig
*

1

FieldCommunicationsProperties

getPort(PortType, int maxWaitMillis, Priority):Port
releasePort(Port):void

-retrieveAvailablePort(PortType):InstallablePort
-relinquishPort(InstallablePort, PortType):boolean

getStatus():PortStatus
disconnect():void

send(byte[] data):void
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

connect(CommPortConfig config,
 String phoneNo):void

PortConfig[] getPorts()

Priority m_priority;
InstallablePort m_port;
boolean m_abandoned;

getServant():org.omg.PortableServer.Servant

String m_modemInitString;
org.omg.PortableServer.Servant m_servant;

getDefaultInactivityTimeoutMillis():int
getPortReclaimerIntervalMillis():int

getProperty()
setProperty()

schedule
cancel

run

String m_comPortName

connect(CommPortConfig config):void

serialEvent(SerialPortEvent evt);

open():void
close():void
isOpen():boolean
&setConfig(byte[] id, String m_name, int inactivityTimeMillis,
 org.omg.PortableServer.Servant, String commPortName):void

String m_name;
int m_inactivityTimeMillis;
int m_lastUseTime;
javax.comm.CommPortIdentifier m_portIdentifier;
byte[] m_id;
org.omg.PortableServer.Servant m_servant;
String m_commPortName;
boolean m_marginal;

main(string[] args):void

byte[] m_identifier
String m_name
String m_className
PortType m_type
boolean m_disabled

String m_initString

init(PortConfig config, long inactivityTime) :void
isInactive():boolean
shutdown():boolean
getServant():org.omg.PortableServer.Servant

Figure 4. FieldCommunicationsModule (Class Diagram)

3.2.1.1 CHART2Service (Class)

The CHART2Service is an application that helps in installation and termination of the modules
in CHART II system.

3.2.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a
receive method that allows a chunk of all available data to be received. This method prevents
callers from having to issue many receive calls to parse a device response. Instead, this receive
call returns all available data received within the timeout parameters. The caller can then parse

FMS R1B2 Detailed Design Rev.0 3-6 11/13/00

the data within a local buffer. Using this mechanism, device command and response should
require only one call to send and one call to receive.

3.2.1.3 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The connect
call needs only to open the communications port.

3.2.1.4 DirectPortConfig (Class)

This class holds configuration data for a direct connect port, which includes only the name of the
COM port.

3.2.1.5 DirectPortImpl (Class)

This class implements the DirectPort interface as defined in the IDL. Its connect method opens a
javax.comm.SerialPort object and sets the port settings according to the baud, data bits, stop bits,
and parity that was passed. Its disconnect method closes the javax.comm.SerialPort. This class
also implements the send and receive functions as specified in the DataPort IDL interface. The
send and receive methods use the read and write methods of the javax.comm.SerialPort object to
send and receive bytes on the COM port. While the send method contains little processing other
than calling the javax.comm.SerialPort object’s write method, the receive method contains logic
that allows it to receive a burst of bytes before returning. This causes the receive method to
return all available bytes on the port and thus helps to prevent the need for multiple calls to
receive for a single command response. This class updates a timestamp each time send or receive
is called. When its isInactive() method is called, it checks the current time vs. the last
send/receive time and if the difference is greater than the current inactivity timeout, it returns
true.

3.2.1.6 FieldCommunicationsModule (Class)

This class is a service application module that can be installed into a CHART2Service. This
module serves one PortManager object that provides access to one or more Port objects. It
publishes the reference to this PortManager in the CORBA Trader. This class contains a
FieldCommunicationsModuleDB object used to provide database access to the other classes
within the package.

3.2.1.7 InstallablePort (Class)

This interface is implemented by Port implementations that can be installed into the
FieldCommunicationsModule and PortManager generically. The PortManagerImpl instantiates
the specific impl using the class name that is part of a port’s configuration data. The
PortManager then calls each port’s init method to allow each port to initialize its internal state.
The PortManagerImpl’s use of this interface allows it to manage all types of ports (current and
future) in a generic way.

FMS R1B2 Detailed Design Rev.0 3-7 11/13/00

3.2.1.8 ModemPortConfig (Class)

This class holds configuration data that is specific to modem ports. The COM port name is
included as well as the type of modem port (ISDN or POTS) and a default modem initialization
string.

3.2.1.9 PortConfig (Class)

This class holds data that is common to all types of ports. The PortManager uses this data to
generically construct port objects.

3.2.1.10 FieldCommunicationsModuleDB (Class)

This class provides methods used access Field Communications configuration data. The
getPorts() method returns an array of PortConfig derived objects that contain configuration data
specific to the type of port that has been configured. The configuration data is retrieved from a
configuration file where PortConfig objects were previously persisted.

3.2.1.11 java.util.Vector (Class)

The Vector class implements a growable array of objects. Like an array, it contains components
that can be accessed using an integer index. However, the size of a Vector can grow or shrink as
needed to accommodate adding and removing items after the Vector has been created. (extracted
from the JDK 1.3 javadoc)

3.2.1.12 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem. ISDN
and POTS modems can be implemented under this interface.

3.2.1.13 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify
various types of ports. All ports must be able to supply their status when requested.

3.2.1.14 PortManagerImpl (Class)

This class implements the PortManager interface as specified in the IDL. Hashtables are used to
keep lists of ports according to their port type. Three of these hashtables are used to separate
ports based on their current state—in use, available, or marginal. Ports that are in the marginal
hashtable are available but are in a marginal state. The getPort method looks for an available port
in the available list prior to the marginal list.

3.2.1.15 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

FMS R1B2 Detailed Design Rev.0 3-8 11/13/00

3.2.1.16 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-
null object can be used as a key or as a value. Objects used as keys implement the hashCode
method that is inherited by all objects from the java.lang.Object class.

3.2.1.17 javax.comm.SerialPortEventListener (Class)

This interface is implemented by objects that wish to be notified of events that occur on a
javax.comm.SerialPort.

3.2.1.18 FieldCommunicationsProperties (Class)

This class provides access to properties in the Chart2Service properties file that are specific to
the FieldCommunicationsModule.

3.2.1.19 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its “defaults”; this second property list
is searched if the property key is not found in the original property list.

3.2.1.20 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring
execution.

3.2.1.21 PortReclaimer (Class)

This class is a timer task that is scheduled to run periodically and cause the PortManager to
determine if any in-use ports have had excessive idle time. When the PortManager discovers
ports that are in-use but have not had activity within a configurable time period, the port manager
disconnects the object, deactivates the object in the POA, and puts the port back in the free list.

3.2.1.22 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or
more times.

3.2.1.23 javax.comm.SerialPort (Class)

This class provides access to a computer’s serial port. It allows the port to be opened and closed
and allows data to be sent and received.

FMS R1B2 Detailed Design Rev.0 3-9 11/13/00

3.2.1.24 ModemPortImpl (Class)

This class implements the ModemPort interface as defined in IDL. The ModemPortImpl’s
connect method calls its base class connect method that opens a communications port. The
connect method then goes on to initialize and dial the modem and determine if the modem has
connected to a remote modem. The disconnect method interrupts the modem, hangs up the
modem, and calls the base class disconnect method which closes the COM port. This class
inherits its base class (DirectPortImpl) send and receive methods which send and receive data
over the connected modem.

3.2.1.25 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources. The
getPort method is used to request the use of a port from the PortManager. Requests for ports
specify the type of port needed, the priority of the request, and the maximum time the requester
is willing to wait if a port is not immediately available. When the port manager returns a port, the
requester has exclusive use of the port until the requester releases the port back to the
PortManager or the PortManager reclaims the port due to inactivity.

3.2.1.26 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a CHART
II service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, POA, Trader, and Event Service.

3.2.1.27 WaitListEntry (Class)

This class contains values that are placed on a wait list to allow prioritized fulfillment of requests
for ports.

FMS R1B2 Detailed Design Rev.0 3-10 11/13/00

3.2.2 Sequence Diagrams

3.2.2.1 DirectPortImpl:close (Sequence Diagram)

A DirectPortImpl processes a close request by delegating the call to the javax.comm.SerialPort
object and then setting associated member variables to null.

DirectPortImpl
or

ModemPortImpl

DirectPortImpl javax.comm.SerialPort

close

close

"set comm port, input,
and output stream

member variables to null"

Figure 5. DirectPortImpl:close (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-11 11/13/00

3.2.2.2 DirectPortImpl:Connect (Sequence Diagram)

The DirectPortImpl processes a connect request by first calling its open method (See
DirectPortImpl:open) and then setting the serial port settings according to the parameters passed
by the caller.

open

DirectPortImpl.m_marginal
is set to true if there is
any failure during connect.
If there is no failure it is set
to false.

ORB

DirectPortImpl javax.comm.SerialPort

connect

setSerialPortParams

m_marginal = false

setFlowControlMode

[unsupported comm params]
ConnectFailure

[failure opening port]
OpenPortFailure

Figure 6. DirectPortImpl:Connect (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-12 11/13/00

3.2.2.3 DirectPortImpl:disconnect (Sequence Diagram)

The DirectPortImpl processes the disconnect request by calling its own close method. If
disconnect is called on a port that is already disconnected, the method simply returns fast and no
exception is thrown.

DirectPortImpl

disconnect

[not connected]

close

ORB

Figure 7. DirectPortImpl:disconnect (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-13 11/13/00

3.2.2.4 DirectPortImpl:init (Sequence Diagram)

When a DirectPortImpl is initialized by the PortManagerImpl, it retrieves information specific to
this port type from the database, which in this case is only the COM port name this object
provides access to. A CommPortIdentifier is retrieved using the specified COM port name. If the
COM port name given is not an existing serial port on the machine where the DirectPortImpl is
running, an exception is thrown.

config data

CommPortIdentifier

The port manager generically instantiates a
object of type InstallablePort and
calls the init method on the InstallablePort. This
diagram shows the processing required for
a DirectPortImpl that is an InstallblePort.

javax.comm.CommPortIdentifierDirectPortImpl FieldCommunicationsModuleDB
PortManagerImpl

init

getPortIdentifier

getDirectPortConfig

[db error]
CHART2Exception

[invalid port name]
CHART2Exception

Figure 8. DirectPortImpl:init (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-14 11/13/00

3.2.2.5 DirectPortImpl:open (Sequence Diagram)

When a DirectPortImpl’s open method is called, it retrieves an instance of a
javax.comm.SerialPort from the CommPortIdentifier that was created during initialization. After
the SerialPort object is retrieved, its input and output streams are retrieved for later use during
send and receive operations. The DirectPortImpl adds itself as an EventListener on the SerialPort
and enables events that signify data is available on the port. This asynchronous notification of
data being available is used in the receive method’s processing. If the port is in use by another
application, this method throws a PortOpenFailure exception.

getInputStream

getOutputStream

addEventListener

notifyOnDataAvailable(true)

DirectPortImpl
or

ModemPortImpl

DirectPortImpl javax.comm.CommPortIdentifier javax.comm.SerialPort

open

open

[port in use by
another app]

PortOpenFailure

Figure 9. DirectPortImpl:open (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-15 11/13/00

3.2.2.6 DirectPortImpl:receive (Sequence Diagram)

The DirectPortImpl receive method is customized for use with command/response devices by
returning all bytes in a response burst in a single call to receive. The caller specifies two
timeouts, the time to wait for the first byte to arrive and the maximum time to wait to determine
that a complete burst of bytes has been received. Using this mechanism, in most cases a single
call to this receive method will return the complete device response. In the unlikely event that the
entire device response is not received in a single call to receive(), the caller can call receive again
to get the remainder of the packet. (Protocol handlers are coded to handle this condition should it
arise).

FMS R1B2 Detailed Design Rev.0 3-16 11/13/00

wait(inter-char timeout)

[more data becomes available after initial check]
serialEvent(DATA_AVAILABLE)

[more data became available]
notify

java.io.InputStream javax.comm.SerialPort

The user passes two timeout values
namely the initial timeout and the inter-character
timeout. The initial timeout is the amount of time
to wait for at least one byte of data to become
available. The inter-character timeout is the
amount of time to wait for subsequent read
to fetch whatever data becomes available

ORB

DirectPortImpl

available

read

receive

If bytes are initially
available, we skip
down to the inter-
character wait.

available

[no bytes available]
wait(initial timeout)

serialEvent (DATA_AVAILABLE)

available
[no bytes available]

new byte[0]

[IO Error]
IOException

[IOError]
m_marginal = false

byte[]

notify

Figure 10. DirectPortImpl:receive (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-17 11/13/00

3.2.2.7 DirectPortImpl:Send (Sequence Diagram)

The DirectPortImpl processes a send request by delegating the request to the output stream of the
javax.comm.Serial port object. If a java.io.IOException is thrown by the output stream, the
exception is caught and re-thrown as a CORBA exception.

[not connected]
IOException

ORB

DirectPortImpl java.io.OutputStream

send

write

[IO Error]
IOException

[IO Error]
m_marginal = true

Figure 11. DirectPortImpl:Send (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-18 11/13/00

3.2.2.8 DirectPortImpl:shutdown (Sequence Diagram)

When a DataPortImpl object is shutdown by the PortManagerImpl, the DataPortImpl closes itself
if it is currently open.

PortManagerImpl

DataPortImpl

shutdown

[if isOpen()]
close

Figure 12. DirectPortImpl:shutdown (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-19 11/13/00

3.2.2.9 FieldCommunicationsModule:initialize (Sequence Diagram)

When the FieldCommunicationsModule is initialized from the Chart2Service, it obtains objects it
will need during processing from the Chart2Service via the ServiceApplication interface. The
FieldCommunicationsModule constructs a single PortManagerImpl object. The
PortManagerImpl creates four Hashtables: three to manage ports and one to manage port
requests that are waiting for a port to free up. Each hash table contains a number of vectors, one
for each type of port that is being managed by the PortManagerImpl. These Vectors are added as
the first port of a given type is encountered, thus after initialization, each Hashtable contains one
vector for each type of port being managed by this particular instance of the PortManagerImpl.
All synchronization done by the PortManagerImpl is done using the freeList Vector for the
specific type of port that is being dealt with, thus getPort() and releasePort() calls for one port
type do not synchronize with getPort and releasePort() calls for other port types. The
synchronization on the freeList is used to synchronize access to all the other lists, including the
wait list, because the getPort() and release() port operations typically manipulate more than one
list during their processing. The PortManagerImpl creates a Timer to be used to periodically
wake the PortManagerImpl and have it check its inUseList for inactive ports. After the
PortManagerImpl has been created the FieldCommunicationsModule activates the object on the
persistent POA to keep the object reference for the PortManager consistent across multiple
object/server life times. The FieldCommunicationsModule uses the ServiceApplication
interface’s registerObject method to publish the object in the Trader and to take care of
withdrawal from the trader when necessary.

FMS R1B2 Detailed Design Rev.0 3-20 11/13/00

[init failed]
"log error, next iteration"

[no entry for this type in free list hash table - first time port type was encountered]
create

java.util.Vector
freeList

java.util.Hashtable

java.util.Timer

PortReclaimer

[no ports found]
failure

create

create

[first time port of this type was encountered]
put

[first time port of this type was encountered]
create

[first time port of this type was encountered]
put

[first time port of this type was encountered]
create

[first time port of this type was encountered]
put

init

InstallablePort create

java.lang.Class

forName

newInstance

create

create

FieldCommunications
ModuleDBServiceApplication

POA
(persistent)

Chart2Service

PortManagerImpl

FieldCommunicationsModule

create

activate_object_with_id

registerObject

initialize

getDBConnectionManager

getORB

[*for each
port in port config]

[no ports found]
CHART2Exception

getPorts

create

get

[first time port of this type was encountered]
put

schedule

add

FieldCommunicationsPropertiescreate

getProperty (DefaultInactivityTimeout)

getProperty (PortReclaimerInterval)

[first time port of this type was encountered]
create

java.util.Hashtable
m_freeList

java.util.Hashtable
m_inUseList

java.util.Hashtable
m_marginalList

java.util.Hashtable
m_waitList

java.util.Vector
inUseList

java.util.Vector
marginalList

java.util.Vector
waitList

getPOA (ROOT_POA_NAME)

getPOA (PERSISTENT_POA_NAME)

create

Figure 13. FieldCommunicationsModule:initialize (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-21 11/13/00

3.2.2.10 FieldCommunicationsModule:Shutdown (Sequence Diagram)

When the FieldCommunicationsModule is shutdown by the Chart2Service it cancels the timer
used to periodically run the ReclaimPorts task. Each list for each port type is then emptied,
shutting down each port object that exists. The ports that are in the inUse list are deactivated
from the POA prior to being shutdown. The port’s shutdown method takes care of disconnecting
any port that is currently connected.

InstallablePort
POA
(root)

Chart2Service
FieldCommunications

Module PortManagerImpl

shutdown

shutdown

deactivate_object

java.util.Timer

cancel

keys

get

synchronized

[*for each key]

clear

get

remove(0)

getServant

deactivate_object
[while

inUseList
not empty]

shutdown

java.util.Hashtable
m_freeList

java.util.Vector
freeList

[while
freeList

not empty]

remove

shutdown

[while
marginal

List
not empty

get

remove(0)

shutdown

java.util.Hashtable
m_inUseList

java.util.Vector
inUseList

java.util.Hashtable
m_marginalList

java.util.Vector
marginalList

POA
(persistent)

java.util.Hashtable
m_waitList

Figure 14. FieldCommunicationsModule:Shutdown (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-22 11/13/00

3.2.2.11 ModemPortImpl:Connect (Sequence Diagram)

A ModemPortImpl processes a connect request by first calling its base class (DirectPortImpl)
connect method. This opens the communications port and readies it for send and receive calls.
The ModemPortImpl then calls the base class send and receive methods to send modem
commands to the modem, first to initialize the modem and then to dial the modem. The
ModemPortImpl parses the modem responses and passes a detailed exception should any
problems occur.

FMS R1B2 Detailed Design Rev.0 3-23 11/13/00

DirectPortImpl

[modem did not respond
with CONNECT]

ModemConnectFailure

ModemPortImpl calls its base
class connect method.

This DirectPortImpl is the ModemPortImpl's
base class. This is really a single object
instance but is shown separately to illustrate
the base class processing that is being used.

super.connect

[failure opening port]
OpenPortFailure

[failure]
IOException

[failure]
IOException

byte[]

[modem responded with
other than "OK" or "0"]

ModemInitFailure

[failure]
IOException

[failure]
IOException

byte[]

[no response from modem]
ModemNotResponding

send
(Send the dial command)

receive
(receive the modem response)

When receiving a response for the
dial command, the timeout for receive
is set to take into account the connection
time between originating and answering
modems.

[no response from modem]
ModemNotResponding

send
(Send the modem init command)

receive
(Recv the modem response)

[no response from modem or invalid response]
m_marginal = true

[no response from modem OR invalid response]
m_marginal = true

ORB

ModemPortImpl

connect

[failure setting port options]
ConnectFailure

m_marginal = false

[success]

Figure 15. ModemPortImpl:Connect (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-24 11/13/00

3.2.2.12 ModemPortImpl:disconnect (Sequence Diagram)

When the ModemPortImpl processes a disconnect request, it uses its base class (DirectPortImpl)
send and receive methods to command the modem to hang up. Before issuing the hangup
command the +++ command must be issued to the modem to put the modem back into command
mode. One second of inactivity must exist prior to and after the +++ command to interrupt the
modem. After hanging up the modem, the ModemPortImpl calls the base class close method to
close the serial port.

A best effort is made
to interrupt the modem
and issue a hang up
command. If any failures
are received (IOException,
No response from modem,
or a non-OK response from
modem, the error condition
is temporarily buffered
until after the port is closed,
at which time the error conditions
are returned to the caller as
a warning.

send
(Send the modem ATH command)

receive
(receive the modem response)

byte[]

"check for OK response"

"check for OK response"

close

Thread.sleep(1000)

Specify an initial receive
timeout of 1.5 seconds
because the +++ command
requires 1 second of inactivity
prior to and following the command
to cause a modem interrupt.

isOpen

[not connected]

ORB

ModemPortImpl DirectPortImpl

byte[]

[Errors from above]
DisconnectException

disconnect

[success]

This DirectPortImpl is the ModemPortImpl's
base class. This is really a single object
instance but is shown separately to illustrate
the base class processing that is being used.

If modem does not respond
to the ATH command,
ModemPortImpl.m_marginal is
set to true.

send
(Send the modem +++ command)

receive
(Recv the modem response)

Figure 16. ModemPortImpl:disconnect (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-25 11/13/00

3.2.2.13 ModemPortImpl:init (Sequence Diagram)

When a ModemPortImpl is initialized by the PortManagerImpl it reads its specific configuration
data from the database, which includes the COM port name and the default modem init string.
Because most configuration values exist in the base class and the base class provides methods
that use these values, the base class setConfig method is called to store the configuration values
in the base class. [Note: the normal way of doing this would be to call the base class constructor
during construction, however because the InstallablePorts are instantiated generically by the
PortManagerImpl, the constructors are not afforded the opportunity to take varying arguments.]

[port does not exist]
CHART2Exception

getModemPortConfig

[db error]
CHART2Exception

super.setConfig

init

The port manager generically instantiates a
object of type InstallablePort and
calls the init method on the InstallablePort. This
diagram shows the processing required for
a ModemPort that is an InstallblePort.

javax.comm.CommPortIdentifier

PortManagerImpl

ModemPortImpl FieldCommunicationsModuleDB

"Store the default
modem init string"

getPortIdentifier

The base class setConfig
method is called to store
the configuration values
that are common between
DirectPortImpl and ModemPortImpl

Figure 17. ModemPortImpl:init (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-26 11/13/00

3.2.2.14 ModemPortImpl:shutdown (Sequence Diagram)

When a ModemPortImpl is shutdown by the PortManagerImpl, it disconnects if it is currently
connected.

PortManagerImpl

ModemPortImpl DirectPortImpl

shutdown

isOpen

[is connected]
disconnect

Figure 18. ModemPortImpl:shutdown (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-27 11/13/00

3.2.2.15 PortManagerImpl:getPort (Sequence Diagram)

When a request to get a port is received by the PortManagerImpl, it retrieves an available port
(see PortManagerImpl:retrieveAvailablePort), activates it with the POA to make it available for
CORBA calls, and returns the Port to the requester. In the event that a port is not available,
getPort method creates a WaitList entry and inserts the entry into the wait list based on the
priority of the request, using an insertion sort to keep the list ordered by order of decreasing
priority and a secondary ordering of fifo based on the time added to the list. After adding an entry
to the wait list, the getPort method waits on the entry’s monitor for the releasePort method to
notify it that a port has been handed off. If not notified within the timeout specified by the
requester, the getPort method marks its wait list entry as abandoned and returns an exception to
the requester.

java.util.Vector
inUseList

[port retrievedl]
getServant

This loop is used to
find the insertion point
for the entry based on
priority. We insert above
the first entry found with
a lower priority.

InstallablePort

[port not available]
[*while more entries

AND curr entry's priority >
new entry's priority]

 >= [port not available]
get

java.util.Hashtable
m_waitList

java.util.Vector
waitList

WaitListEntry

get

synchronized

[port not available]
create

[port not available]
get

[port not available]
add

"end synchronization"

synchronized

[entry's port is null]
wait

[port retrieved]
activate_object

[port retrievedl]
Port

[entry's port is null]
"mark as abandoned wait"

java.util.Hashtable
m_inUseList

[port retrieved and error activating object]
add

"end synchronization"

[error activating object]
CHART2Exception

"end synchronization"

getPort

[no free list for given port type]
NoPortsFound

retrieveAvailablePort

[entry's port is null]
GetPortTimeout

synchronized

[port retrieved]
get

[port retrieved]
add

POA
java.util.Hashtable

m_freeList
java.util.Vector

freeListPortManagerImpl
ORB

Figure 19. PortManagerImpl:getPort (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-28 11/13/00

3.2.2.16 PortManagerImpl:ReclaimPorts (Sequence Diagram)

The PortManagerImpl contains a Timer that periodically calls the PortManagerImpl’s
reclaimPorts method. The PortManagerImpl checks each port in its inUseList to see if it meets its
own criteria for being deemed inactive. If a port is found to be inactive, it is deactivated from the
POA, preventing any further calls to the port by its current user. The inactive port is then
removed from the inUseList and returned to the freeList.

java.util.Timer

PortReclaimer PortManagerImpl InstallablePort POA

[port inactive]
disconnect

[port inactive]
deactivate_object

[*while key enumeration
hasMoreElements]

isInactive

java.util.Hashtable
m_freeList

java.util.Vector
freeList

run

reclaimPorts

java.util.Hashtable
m_inUseList

java.util.Vector
inUseList

gets inUse vector
for port type indicated
by the key.

Port decides if it is inactive
based on inactivity timeout passed
during initialization, the time of last
activity, and the current time.

keys

get

synchronized

get

[port inactive]
remove

get

[*while more elements
in InUse Vector]

[port inactive]
getID

[port inactive]
relinquishPort

[port inactive and not relinquished]
add

"end synchronization"

Figure 20. PortManagerImpl:ReclaimPorts (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-29 11/13/00

3.2.2.17 PortManagerImpl:ReleasePort (Sequence Diagram)

When a Port is released, the PortManagerImpl finds the port in its inUseList, disconnects the port
and deactivates the object from the POA. The private relinquishPort method is called to hand off
the port to the highest priority requester of the given port type. If there was no one waiting for
the port, the port is removed from the inUseList and returned to the freeList. See the
PortManagerImpl:reqlinquishPort sequence diagram for details on the hand off process.

[found]
relinquishPort

releasePort

[found]
remove

[port not relinquished to a waiting thread]
add

Free list Vector for
the given port type is
used for synchronization
among operations for the
port type.

Port

Search for port based
on ID.

get vector from
hashtable using key
from enumeration. Keys
represent port types.

keys

java.util.Hashtable
m_inUseList

java.util.Vector
inUseList POA

get

InstallablePort

get[*while more items
in Vector and

not found]

java.util.Hashtable
m_freeList

java.util.Vector
freeList

[found]
disconnect

[found]
deactivate_object

ORB

[port not found]
CHART2Exception

PortManagerImpl

"end synchronization"

[found]
getID

get

getID

[*while key enumeration
hasMoreElements and

port not found]

synchronized

Figure 21. PortManagerImpl:ReleasePort (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-30 11/13/00

3.2.2.18 PortManagerImpl:RelinquishPort (Sequence Diagram)

The PortManagerImpl relinquishPort method is a private helper method used to “hand off” a
releasedPort to the top priority waiter (if any). The port is passed to the waiter through the
WaitListEntry object that the waiter placed on the wait list. It is possible that a waiter put an
entry on the wait list and then timed out. When this occurs the waiter marks the entry as
abandoned. When the relinquishPort method encounters such entries, it simply removes them
from the wait list and attempts to give the port to the next waiter in the list.

[not abandoned]
setPort

[not abandoned]
notify

get

"end synchronization"

PortManagerImpl
PortManagerImpl

java.util.Vector
waitList

java.util.Hashtable
m_waitList WaitListEntry

relinquishPort

[not abandoned]
"break loop"

The Wait list entries
Vector is sorted on
priority in descending
order. The first element
in the vector is the most
qualified entry to be
notified of an available
port, provided it has not
been abandoned.

true

isAbandoned

synchronized

remove(0)

[*while there are
more entries]

[entry not notified]
false

Figure 22. PortManagerImpl:RelinquishPort (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-31 11/13/00

3.2.2.19 PortManagerImpl:retrieveAvailablePort (Sequence Diagram)

The PortManagerImpl’s retrieveAvailablePort method is a private helper method that manages
removing a port from the free or marginal list, placing it in the inUseList, and returning the port.
While searching for a port in the free list, any ports encountered that do not have a status of OK
are moved to the end of the marginal list. Ports in the marginal list are only retrieved if a port is
not available in the free list.

java.util.Hashtable
m_freeList

java.util.Vector
freeListPortManagerImpl

PortManagerImpl
InstallablePort

java.util.Hashtable
m_marginalList

java.util.Hashtable
m_inUseList

java.util.Vector
marginalList

java.util.Vector
inUseList

[at least one element in marginal vector]
remove(0)

[*While more elements
in free list and OK

port not found]

get

getStatus

get

retrieveAvailablePort

[port marginal]
add

[port marginal]
get

[port marginal]
remove

[port not found in free list]
get

size

[port retrieved from
free or marginal vector]

InstallablePort

[port not found in
free or marginal vector]

null

Figure 23. PortManagerImpl:retrieveAvailablePort (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-32 11/13/00

3.3 DMS Protocols

3.3.1 Classes

3.3.1.1 Protocol Handler Classes

This class diagram shows the protocol handler classes that are related to DMS control.
DMSProtocolHdlrConfig

1

1

1

1

SylviaDMSDeviceStatus

1

1

1

1

DMSProtocolHandlerException

1

1

1

1

1

1

1

1

1

PCMSDMSDeviceStatus

DMSDeviceStatus

FP9500DMSDeviceStatus TS3001DMSDeviceStatus

DMSProtocolHdlr

FP9500ProtocolHdlr
FP2001ProtocolHdlr FP1001ProtocolHdlr

ADDCOProtocolHdlr

TS3001ProtocolHdlr

SylviaProtocolHdlrPCMSProtocolHdlr

DataPort
1*

DMSHardwarePage

*

MultiConverter

1

MultiParseListener

1

1

1

setConfiguration(DMSProtocolHdlrConfig):void
setMessage(DataPort port,
 string MULTI,
 boolean beacons):void
blank(DataPort):void
getStatus(DataPort):DMSDeviceStatus
reset(DataPort):void

performPixelTest():bool
setCommLossTimeout(int):
 void

send(byte[] data):void
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

short m_signType
SignMetrics m_signMetrics
int m_maxPages
int m_dropAddress
int m_defLineJustification
int m_defPageOnTime
int m_defPageOffTime

string reason

boolean m_batteryBackup
PCMSDeviceMobility
PCMSPowerType
PCMSSignType
PCMSSignColorType
PCMSDispModule
PCMSSignStatus
PCMSGeneratorStatus
PCMSGeneratorMode
int m_sequenceNo
byte m_rate
int m_messageSource
int m_dispPriority
int m_signBatteryVoltage
int m_engineBatteryVoltage
int m_linePowerVoltage
int m_photocellReading
in m_brightnessLevel
int m_rpm
int m_fuelLevel
PCMSMessageType m_defMsgType
int m_defMsgNum
int m_lowTempThresh
int m_numOfBadDots
int m_ambientTemp

int m_dispTimeRemaining
boolean m_signBlank
SylviaSignStatus
SylviaControllerStatus
SylviaMessageSource
SylviaDNSensorStatus
SylviaOBSensorStatus
SylviaDNCmdStatus
SylviaOBCmdStatus
SylviaSensorFunctionStatus m_dnFunctionStatus
SylviaSensorFunctionStatus m_obFunctionStatus
SylviaShutterServiceStatus
boolean m_defaultDisplayActive
boolean m_powerSupplyBad
SylviaLocalDisplayMessage
int m_localDispMessageNumber

String m_messageMulti;
boolean m_beaconState;
ShortErrorStatus m_shortErrorStatus;

BitMap m_pixelStatusMap
byte[] m_primaryLampStatusMap
byte[] m_secondaryLampStatusMap
int m_currentMsgNum
FP9500MsgSource m_currentMsgSource
int m_frontPhotocellLight
int m_backPhotocellLight
int m_topPhotocellLight
FP9500LastError m_lastError
int m_errorValue
int m_errorLoc
int m_pixelOnFailuresCount
int m_pixelOffFailuresCount
int m_moduleFailuresCount
int m_illegalAccessCount
FP9500BBRamStatus m_bbRAMStatus
FP9500ExtBBRamStatus m_extbbRAMStatus
FP9500PWRFailureStatus m_pwrFailStatus
FP9500SerialCommStatus m_commPortStatus
FP9500CmdMsgStatus m_commandStatus
FP9500DisplayStatus m_displayStatus
FP9500HWStatus m_hwStatus
int m_ledIntensity
int m_ttlState
int m_lineVolts
int m_lampLife

BitMap m_pixelStatusMap
BitMap m_lampStatusMap
TS3001Mode m_currentMode
boolean m_programFault
boolean m_commLossStatus
boolean m_commandError
boolean m_pwrFailure
boolean m_backupPwrFailure
boolean m_primaryLampFailure
boolean m_secondaryLampFailure
boolean m_signDisplayFailure
boolean m_pixelFailure
boolean m_illumSystemFailure
boolean m_PLCState
TS3001IlluminationMode m_illumControlMode
boolean m_pwrRecovery
boolean m_temperatureWarning
boolean m_signDriverFailure
byte m_signIllumLevel

char[][] m_pageText
int m_pageOnTime
int m_pageOffTime

multiToPlainText(multi)
plainTextToMulti(text, formatter)
parseMulti(multi, listener)
hardwareMsgToMulti(DMSHardwarePage[] msg):String

messageTxt(text)
lineJustification(justify)
newLine(pixelSkip)
newPage()
pageDisplayTime(timeOn, timeOff)
unknownTag(tag)
parseComplete()

Figure 24. DMSProtocols (Class Diagram)

FMS R1B2 Detailed Design Rev.0 3-33 11/13/00

3.3.1.1.1 ADDCOProtocolHdlr (Class)

This protocol handler contains the protocol for communicating with an ADDCO portable DMS.

3.3.1.1.2 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type support a
receive method that allows a chunk of all available data to be received. This method prevents
callers from having to issue many receive calls to parse a device response. Instead, this receive
call returns all available data received within the timeout parameters. The caller can then parse
the data within a local buffer. Using this mechanism, device command and response should
require only one call to send and one call to receive.

3.3.1.1.3 DMSDeviceStatus (Class)

This class contains data returned by all DMS protocol handlers getStatus() method. DMSs that
support more detailed status return a derivation of this class.

3.3.1.1.4 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual DMS
hardware. A two dimensional array that is the same size as the sign’s display (rows and columns)
specifies the character displayed in each cell, including blank if the cell has no character. This
format maps well to the way DMS protocols return the current message being displayed in a
status query. This class can then be passed to a MultiConverter object to convert the message
into MULTI format.

3.3.1.1.5 DMSProtocolHandlerException (Class)

This exception is thrown when a DMS device fails to respond to a command or a protocol error
is detected in the response packet.

3.3.1.1.6 DMSProtocolHdlr (Class)

This interface defines the methods that must be supported by DMS prototocol handlers. [Note:
some handlers support methods in addition to these standard methods.]

3.3.1.1.7 FP9500ProtocolHdlr (Class)

This protocol handler implements the protocol used to command an FP9500 DMS. The
performPixelTest method causes a pixel test to be run on the sign. The status of pixels reported
in the getStatus method contains the status since the last time a pixel test was run.

3.3.1.1.8 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-up
language and plain text. It also provides a method that will parse a MULTI message and inform a
MultiParseListener of elements found in the message.

3.3.1.1.9 PCMSDMSDeviceStatus (Class)

This class contains status data that is returned from the Display Solutions PCMS protocol
handler in the getStatus call.

FMS R1B2 Detailed Design Rev.0 3-34 11/13/00

3.3.1.1.10 DMSProtocolHdlrConfig (Class)

This class contains the configuration parameters for the DMS Protocol handlers.

3.3.1.1.11 SylviaDMSDeviceStatus (Class)

This class contains status data that is returned from the Sylvia protocol handler in the getStatus
call.

3.3.1.1.12 FP1001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP1001 DMS.

3.3.1.1.13 FP2001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an FP2001 DMS.

3.3.1.1.14 PCMSProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Display Solutions
(Winkomatic) Portable DMS.

3.3.1.1.15 SylviaProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Sylvia DMS.

3.3.1.1.16 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing
class to be notified as parsing of a MULTI message occurs. An exemplary use of a
MultiParseListener would be the MessageView window which will need to have the MULTI
message parsed in order to display it as a pixmap.

3.3.1.1.17 FP9500DMSDeviceStatus (Class)

This class contains status data that is returned from the FP9500 protocol handler in the getStatus
call.

3.3.1.1.18 TS3001DMSDeviceStatus (Class)

This class contains data returned from the TS3001 protocol handler’s getStatus() method.

3.3.1.1.19 TS3001ProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Telespot 3001 series
DMS.

FMS R1B2 Detailed Design Rev.0 3-35 11/13/00

3.3.1.2 Support Classes

This diagram contains the support classes used by the various DMS protocol handlers to provide
extended status reporting.

ASCIICode
BitMap

SylviaSensorFunctionStatus

PCMSDeviceMobility

FP9500LastError

FP9500MsgSourceFP9500BBRamStatus
FP9500PWRFailureStatus

FP9500SerialCommStatusFP9500CmdMsgStatus
FP9500DisplayStatusFP9500HWStatus

SylviaShutterServiceStatus SylviaLocalDisplayMessage

SylviaSignStatus

SylviaControllerStatus

SylviaMessageSource SylviaDNSensorStatus SylviaOBSensorStatus

SylviaDNCmdStatus

SylviaOBCmdStatus

PCMSDispModule

PCMSSignStatus PCMSGeneratorStatus
PCMSGeneratorMode

PCMSMessageType

TS3001Mode
TS3001IlluminationMode

FP9500ExtBBRamStatus

PCMSPowerType PCMSSignType PCMSSignColorType

AUTOMATIC_MODE
MANUAL_MODE

NO_SERVICE_IN_PROGRESS
SERVICE_IN_PROGRESS

INVALID_MSG_TYPE
INVALID_BLOCK_ITEM
COMM_SYNC_ERROR
INVALID_TIME_SYNC
INVALID_DOWNLOAD_DATA
BROADCAST_ADDRESS

LOCAL_MODE
REMOTE_MODE

PHOTOCELL
MESSAGE_CONTROLLED
SERIAL_COMMAND_CONTROLLED
NO_ILLUMINATION_CONTROL_OR_FAILURE

FONT_LOGICAL_BLOCK_ERROR
BITMAP_LOGICAL_BLOCK_ERROR
MESSAGE_LOGICAL_BLOCK_ERROR
PASSWORD_LOGICAL_BLOCK_ERROR
INTENSITY_LOGICAL_BLOCK_ERROR
CONTROL_LOGICAL_BLOCK_ERROR
STATUS_LOGICAL_BLOCK_ERROR
TIME_LOGICAL_BLOCK_ERROR
SWID_LOGICAL_BLOCK_ERROR
MSGDURATION_LOGICAL_BLOCK_ERROR
UNUSED1_LOGICAL_BLOCK_ERROR
UNUSED2_LOGICAL_BLOCK_ERROR
CNTRL_LOGICAL_BLOCK_ERROR
SIGN_LOGICAL_BLOCK_ERROR

FLIP_DISK
LAMP_LED

DEFAULTED
SIGN_ACTIVE
FUEL_LOW
DISPLAYING_TEST_PATTERNS
POWER_LOW
TICS_ENABLED

GENERATOR_STOPPED_OR_START_FAILED
ALTERNATOR_FAILED
GENERATOR_RUNNING
GENERATOR_STARTING
ALT_FIELD_DISABLED_NO_RPM_READING
GENERATOR_AUTOCHARGING
COMMANDED_STOP

MANUAL
AUTOMATIC
QUIET
AUTO_WITH_LOW_TEMP_START
AUTO_WITH_LIGHTS

ROM
EEPROM

NORMAL_COMMAND
OVERBRIGHTNESS_COMMAND

PORTABLE
STATIONARY

DC
120VAC

DISCRETE
CONTINUOUS

byte NUL
byte SOH
byte STX
byte ETX
byte ACK
byte DC1
byte NAK

byte[][] bmap

COLOR
B/W

ERRORS_CLEARED
FONT_ERROR
ILLEGAL_FONT_CHAR_IN_MSG
ILLEGAL_CNTRL_CHAR_IN_MSG
TOO_MANY_ANIMATE_CHARS
TOO_MANY_FLASH_AREAS
BAD_PIXEL_ON_SIGN
AD_CONVERTERS_RANGE_ERROR
ILLEGAL_ACCESS
PROG_EPROM_ERROR

VMS_CENTRAL
LAPTOP
FRONT_PANEL
GATE_CONTROLLER
AUTOMSG_ON_ERROR

WRITE_IN_PROGRESS
WRITE_PENDING
WRITE_FAILURE
PF_CORRUPT_BBRAM
PF_OPER_IGNORED
INVALID_CHECKSUM

NORMAL_OPERATION
LOOPBACK_MODE
BACKUP_OPERATION
LAMPS_OUT_AND_OFF
LAMPS_OUT_AND_ON
NO_48_VOLTS
SIGN_ABORTED
BAD_SHUTTER_PWR_SUPPLY
SIMULATION_MODE_ACTIVE

CENTRAL_COMPUTER
MAINT_TERMINAL
LOCAL_CONTROL_PANEL
REMOTE_CONTROL_PANEL

NIGHT_MODE
DAY_MODE

NORMAL_MODE
OVERBRIGHTNESS_MODE

NIGHT_COMMAND
DAY_COMMAND

NO_LOCAL_DISPLAY_ON
TEST_MESSAGE_DISPLAYED
OTHER

SIGN_OFF
SIGN_LOADED
SIGN_LOADED_IN_DEFERRED_MODE
SIGN_LIT
SIGN_BUSY

FONT_NOT_AVAILABLE
BITMAP_NOT_AVAILABLE
ILLEGAL_CHAR_IN_MSG
TOO_MANY_ANIMATED_CHARS
TOO_MANY_FLASHING_AREAS

BAD_DIMMER
BAD_PCFRONT
BAD_PCTOP
BAD_PCBACK
BAD_DRIVER
BAD_DOT_DRIVER_PWR
BAD_PROG_PROM
LAMP_FAILURE

POWER_FAIL
DOWN_TIME_OVERRUN

TRANSMIT_IN_PROGRESS
CARRIER_DETECT
OVERRUN_ERROR
FRAMING_ERROR
PARITY_ERROR
CHECKSUM_ERROR
BUFFER_FULL_ERROR

Figure 25. ProtocolSupportClasses (Class Diagram)

3.3.1.2.1 ASCIICode (Class)

This class is a holder for ASCII codes used by protocol handlers when communicating with a
DMS.

FMS R1B2 Detailed Design Rev.0 3-36 11/13/00

3.3.1.2.2 BitMap (Class)

This structure is used to pass status data that maps to pixels on a DMS, such as pixel status or
lamp status. Each row of the bmap member corresponds to a row of pixels on the DMS. A value
of 1 in a cell indicates the status for that pixel is OK while a zero indicates a failure.

3.3.1.2.3 FP9500BBRamStatus (Class)

This enumeration defines the valid values for the Battery Backed RAM Status in a FP9500
device.

3.3.1.2.4 FP9500PWRFailureStatus (Class)

This enumeration defines the valid values that indicate the power failure condition in a FP9500
device.

3.3.1.2.5 FP9500DisplayStatus (Class)

This enumeration defines the valid values that indicate the message error status of a previous
message display operation on a FP9500 device.

3.3.1.2.6 FP9500HWStatus (Class)

This enumeration defines the valid values that indicate the sign controller hardware error status
of a FP9500 device.

3.3.1.2.7 FP9500LastError (Class)

This enumeration defines the reasons for the failure of the last device command sent to a FP9500
device.

3.3.1.2.8 FP9500MsgSource (Class)

This enumeration defines the valid values for a originator of the current message displayed on a
FP9500 device.

3.3.1.2.9 FP9500CmdMsgStatus (Class)

This enumeration defines the valid values that indicate the status of the message selection
command sent to a FP9500 device.

3.3.1.2.10 FP9500ExtBBRamStatus (Class)

This enumeration defines the values that indicate a corrupt logical block that was reported as a
result of Battery backed RAM error on a FP9500 device.

3.3.1.2.11 FP9500SerialCommStatus (Class)

This enumeration defines the valid values that indicate the serial communication port status of
the FP9500 device.

FMS R1B2 Detailed Design Rev.0 3-37 11/13/00

3.3.1.2.12 PCMSDeviceMobility (Class)

This enumeration defines the valid values that indicate the mobility type of a Display solutions
PCMS device.

3.3.1.2.13 PCMSDispModule (Class)

This enumeration defines the valid values that indicate the type of display module used in a
Display Solutions PCMS device.

3.3.1.2.14 PCMSGeneratorMode (Class)

This enumeration defines the valid values that indicate the Generator mode of the Display
Solutions PCMS device.

3.3.1.2.15 PCMSGeneratorStatus (Class)

This enumeration defines the valid values that indicate the Generator status of a Display
Solutions PCMS device.

3.3.1.2.16 PCMSMessageType (Class)

This enumeration defines the valid values that indicate the various message types used in a
Display Solutions PCMS device.

3.3.1.2.17 PCMSPowerType (Class)

This enumeration defines the valid values that indicate the Power type of a Display Solutions
PCMS device.

3.3.1.2.18 PCMSSignColorType (Class)

This enumeration defines the valid values that indicate the color of a Display Solutions PCMS
device.

3.3.1.2.19 PCMSSignStatus (Class)

This enumeration defines the valid values that indicate the Sign status of a Display Solutions
PCMS device.

3.3.1.2.20 PCMSSignType (Class)

This enumeration defines the valid values that indicate the sign module type of a Display
Solutions PCMS device.

3.3.1.2.21 SylviaDNSensorStatus (Class)

This enumeration defines the valid values for the Day/Night Sensor status of a Sylvia device.

3.3.1.2.22 SylviaOBSensorStatus (Class)

This enumeration defines the valid values for the Overbrightness Sensor status of a Sylvia
device.

FMS R1B2 Detailed Design Rev.0 3-38 11/13/00

3.3.1.2.23 SylviaDNCmdStatus (Class)

This enumeration defines the valid values for the Day/Night command status of a Sylvia device.

3.3.1.2.24 TS3001Mode (Class)

This enumeration defines the operational modes of a TS3001 device.

3.3.1.2.25 SylviaControllerStatus (Class)

This enumeration defines the valid values that indicate the controller status of a Sylvia device.

3.3.1.2.26 SylviaMessageSource (Class)

This enumeration defines the valid values for a originator of the current message displayed on a
Sylvia device.

3.3.1.2.27 TS3001IlluminationMode (Class)

This enumeration defines the valid values that indicate the sign illumination control setting on a
TS3001 device.

3.3.1.2.28 SylviaOBCmdStatus (Class)

This enumeration defines the valid values for the Overbrightness command status of a Sylvia
device.

3.3.1.2.29 SylviaSignStatus (Class)

This enumeration defines the valid values that indicate the sign module status of a Sylvia device.

3.3.1.2.30 SylviaLocalDisplayMessage (Class)

This enumeration defines the valid values for the local display message of a Sylvia device.

3.3.1.2.31 SylviaSensorFunctionStatus (Class)

This enumeration defines the valid values for the sensor function status of a Sylvia device.

3.3.1.2.32 SylviaShutterServiceStatus (Class)

This enumeration defines the valid values for the shutter service status of a Sylvia device.

FMS R1B2 Detailed Design Rev.0 3-39 11/13/00

3.3.2 Sequence Diagrams

3.3.2.1 DMSProtocols:TypicalSetMessage (Sequence Diagram)

This sequence shows typical processing of a protocol handler to set the message of a DMS. All
protocol handlers have slightly different implementations due to the different protocols being
implemented. However, all protocol handlers have a general goal of formatting a byte array
according to the device protocol, sending the byte array to the device, and receiving a response
from the device to determine if the command was successful. Because DMS messages are
specified in the MULTI format, part of the processing required to format a byte array to
command the DMS includes converting the MULTI message into the proper sequence of bytes
the DMS expects. The MultiConverter class helps to parse through the MULTI tags and pull
apart the message into simple pieces that the protocol handler can use to format the byte array.
Once told to parse a multi string, the MultiConverter calls back into the parse listener (which
happens to be the protocol handler in our case) as it encounters multi tags and message text.
After the protocol handler has formatted the byte array, it sends it to the device using the
DataPort interface, which may actually be a modem or a direct connect port. After sending the
command, the protocol handler reads the response from the device and determines if the
command was successful. Failures are indicated though the use of exceptions which contain a
specific reason for the failure.

FMS R1B2 Detailed Design Rev.0 3-40 11/13/00

CHART II
DMS Object

DataPort
DMSProtocolHandler

Derived Class MultiConverter

The DMSProtocolHandler implements
the MultiParseListener interface
which is called back from the
MultiConverter parseMulti method.

Protocol handler
will typically store
the justification until
a new line is encountered,
at which time it may add
blanks to the front of the
text to achieve the desired
justification.

Protocol handler will
typically store the text
in a buffer for the current
row and perform final
adjustments when a
new line is encountered.

Protocol handler will typically
make justification adjustments
to text on current line and place
line's text into the set message
command that will be sent to
the device.

When parse is completed,
protocol handler will finalize
any line / page that was not
explicitly terminated and copy
data into the command packet
to be sent to the device.

Protocol handler will complete
the command packet, adding
checksum, trailers, etc.

setMessage

parseMulti

messageText

newLine

lineJustification

lineJustification

messageText

newLine

parseComplete

send

receive

response data

Figure 26. DMSProtocols:TypicalSetMessage (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-41 11/13/00

3.4 Device Utility

3.4.1 Classes
This diagram shows the classes contained in the DeviceUtility package. These classes are used
mainly by CHART II device objects. The classes PortLocator and PortManagerListEntry have
been added to simplify use of failover with the FMS subsystem.

PortLocator

PortManagerListEntry

1..*

1

*

ArbitrationQueueDB

ArbitrationQueueImpl

DictionaryWrapper

1

1

1

ArbitrationQueue

1

*1

DBConnectionManager

1

ArbQueueEntry

PortLocator(String[] commServerHostnames):PortLocator
PortLocator(Identifier[] portManagerIDs):PortLocator
getPort(PortType, int maxWaitMillis, Priority):Port
getPortManagerID():Identifier
getPortManagerName():String
releasePort(Identifier portID):void
setTransientFailover(boolean on):void
setNoPortFoundFailover(boolean on):void
setTimeoutFailover(boolean on):void
setTransientRetry(boolean on):void
setTimeoutRetry(boolean on):void
setMaxFailureRetries(int noOfRetries):void

Vector m_portManagerList;
PortManagerEntry m_currentPortOwner;
boolean m_transientFailover;
boolean m_noPortFoundFailover;
boolean m_timeoutFailover;
boolean m_transientRetry;
boolean m_timeoutRetry;
int maxRetriesOnFailures;

getConnection():java.sql.Connection
releaseConnection();
shutdown();

interrupt():void
resume():void
requestSucceeded(reqID):void
requestFailed(reqID, prevMsgRemains, failReason):void
asyncDeviceStatus(reason):void
asyncMsgChanged(reason):void
&evaluateQueue():void

boolean m_interrupted
boolean m_deviceReqInProg
long m_deviceReqID
java.util.Vector m_msgQueue
java.lang.Object[] m_lock
DictionaryWrapper m_dictionary

get():DictionaryWrapper
setWrapperSettings(ORB, CosTrading.Lookup):void
setMinimumRediscoveryPeriod(long seconds):void

getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList
-DictionaryWrapper():DictionaryWrapper
-getDictionary():Dictionary

-CosTrading.Lookup m_trader
-ORB m_orb
-java.util.Vector m_dictionaries
-java.lang.Object m_lock
long m_lastTraderLookupTimestamp

ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
getTrafficEvent():TrafficEvent
getTrafficEventID():byte[]
abstract setActive(String deviceName, String msg):void
abstract setInactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

TrafficEvent m_trafficEvent
byte[] m_trafficEventID
Message m_message
boolean m_inProgress
boolean m_active
boolean m_deleted
boolean m_updated

ArbitrationQueueDB(DBConnectionManager db):ArbitrationQueueDB
getArbitrationQueue(byte[] deviceID)
persist(ArbitrationQueue):void

DBConnectionManager m_db

addEntry(AccessToken, ArbQueueEntry):void
removeEntry(AccessToken, byte[] trafficEventID):void
eventTypeChanged(AccessToken, TrafficEvent):void;
eventTransferred(AccessToken token,
 TrafficEvent trafficEvent,
 Identifier opCenterID,
 string opCenterName):void;

Identifier m_portMgrID;;
PortManager m_portMgrRef;

Figure 27. DeviceUtility (Class Diagram)

FMS R1B2 Detailed Design Rev.0 3-42 11/13/00

3.4.1.1.1 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the
deployment of many PortManagers. The PortLocator is initialized by specifying a preferred
PortManager and optionally one or more alternate PortManagers. When asked to acquire a port,
the PortLocator first attempts to acquire a port from the preferred PortManager and falls back to
alternate PortManager objects when faults occur. The PortLocator can also be set to determine
the fallback action (if any) if a Port cannot be obtained from the preferred PortManager.

The failure types that may occur are:

1. The PortManager does not have any of the requested type of ports (either none exist or all
that it has are failed).

2. The PortManager’s ports of the requested type are all in use and one does not become
available within the timeout specified.

3. A connection to the PortManager object cannot be established (CORBA.Transient,
CORBA.ObjectNotExist). When one of these failures occurs, the PortLocator uses its
settings to determine if it will attempt to acquire a port from the next communication
server in its list or return an error to the caller.

Because the PortLocator is initialized with port manager object IDs or PortManager names, it
uses the CORBA trader to obtain object references for the PortManager on each communication
server.

The PortLocator is designed to be used by a single device object. Only one port may be
requested at a time, thus a second call to getPort prior to a call to releasePort will result in an
exception. When the PortLocator acquires a port for the user it stores the PortManager from
which it received the port and can provide the name or ID (depending on how the PortLocator
was initialized) of the PortManager from which the port was retrieved.

3.4.1.1.2 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for
PortManager objects.

FMS R1B2 Detailed Design Rev.0 3-43 11/13/00

3.4.2 Sequence Diagrams

3.4.2.1 PortLocator:getPort (Sequence Diagram)

When a request is made to the PortLocator to get a port, the PortLocator gets the first entry from
its port manager list (which is the preferred port manager) and asks the port manager for a port.
If the getPort call on the port manager fails, the PortLocator consults its retry settings and may
retry the operation depending on the specific failure condition. If all retries (if any) of the getPort
operation on the port manager are exhausted without success, the PortLocator may failover to the
next PortManager in the PortLocator’s list, depending on the specific error condition
encountered and the settings for failover in the PortLocator. Because the PortLocator is
initialized with only object identifiers for the preferred and fallback port managers, a Trader
query is made to obtain an object reference the first time a PortManager is to be accessed.

We store the list entry
for the port manager that
served us the port so we
can go back to the same
port manager to release
the port.

PortLocator
java.util.Vector

m_portManagerList CorbaUtilities org.omg.CosTrading.LookupCHART2
Device Object

PortManagerPortManagerListEntry

query

PortManager

getPort

[Error AND
Retries enabled for

specific error condition AND
more retries]

[port not retrieved AND
failover not enabled

for specific error
condition]

CHART2Exception

[*while more port managers
in list and port not retrieved]

getPort

get

[list entry's object ref is null]
findObjectByID

[port not retrieved]
CHART2Exception

[port retrieved]
Port

[port retrieved]
"store list entry

as current port owner"

Figure 28. PortLocator:getPort (Sequence Diagram)

FMS R1B2 Detailed Design Rev.0 3-44 11/13/00

3.4.2.2 PortLocator:ReleasePort (Sequence Diagram)

When the PortLocator releasePort method is called, the PortLocator uses the port manager
reference that it stored in the getPort method to release the port from the correct PortManager.

PortManagerListEntry
m_currentPortOwner

"get port manager object ref"

[no port to release]

Chart2
Device Object

PortLocator PortManager

releasePort

releasePort

Figure 29. PortLocator:ReleasePort (Sequence Diagram)

FMS R1B2 Detailed Design 11/13/00 BI-1

Bibliography

CHART II Business Area Architecture Report, document number M361-BA-005R0,
Computer Sciences Corporation and PB Farradyne, Inc., April 28, 2000

CHART II System Requirements Specification Release 1 Build 2, document no. M361-RS-
002R1, Computer Sciences Corporation and PB Farradyne, Inc.

FMS R1B2 High Level Design, document number M303-DS-002R0, Computer Sciences
Corporation and PB Farradyne, Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

TELE-SPOT 3001 Sign Controller Communications Protocol, document no. 750208-040
v2.3, T-S Display Systems Inc., 1995

Functional Specification for FP9500ND – MDDOT Display Control System, document no.
A316111-080 Rev. A6, MARK IV Industries Ltd., 1998.

Maintenance Manual for the FP1001 Display Controller, document no. 316000-443 Rev. E,
Ferranti-Packard Displays, 1987

FP2001 Display Controller Application Guide, document no. A317875-012 Rev. 8, F-P
Electronics, 1991

Engineering Specification - Brick Sign Communications Protocol, Rev. 1, ADDCO Inc.,
1999.

PCMS Protocol version 4, document number 32000-150 Rev. 5, Display Solutions, 2000

BSC Protocol Specification (Data Link Protocol Layer), v. 1.3, Fiberoptic Display Systems
Inc., 1996

Sylvia Variable Message Sign, Command Set 9403-1, v. 1.4, Fiberoptic Display Systems Inc.,
1996

2.5 Mile AM Travelers Information Station Instruction Manual For: Maryland State
Highway Administration, Information Station Specialists.

Technical Practice RC-2A Remote Touch-Tone On/Off Industrial Controller, Viking
Electronics Inc., August 1993.

FMS R1B2 Detailed Design 11/13/00 AC-1

Acronymns
The following acronyms appear throughout this document:

API Application Program Interface

BAA Business Area Architecture

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DMS Dynamic Message Sign

FMS Field Management Station

GUI Graphical User Interface

HAR Highway Advisory Radio

IDL Interface Definition Language

ISDN Integrated Services Digital Network

ITS Intelligent Transportation Systems

LATA Local Access and Transport Areas

MULTI Mark Up Language for Transportation Information

NTCIP National Transportation Communications for ITS Protocol

OMG Object Management Group

ORB Object Request Broker

POA Portable Object Adapter

POTS Plain Old Telephone System

R1B2 Release 1, Build 2 of the CHART II System

TTS Text To Speech

UML Unified Modeling Language

FMS R1B2 Detailed Design 11/13/00 A-1

Appendix A – Glossary

COM Port (or COMM
Port)

A serial communications port on a computer. These ports are
typically named COM1, COM2, etc.

CORBA An object oriented software architecture that allows software

objects to interact over a network.

CORBA Event A CORBA mechanism using which different Chart2 components

exchange information without explicitly knowing about each
other.

CORBA Trader A CORBA service that facilitates object location and discovery.

A server advertises an object in the Trading Service based on the
kind of service provided by the object. A client locates objects of
interest by asking the Trading Service to find all objects that
provide a particular service.

Direct Port A type of Port that provides access directly to a COM port on the

machine that serves the DirectPort object.

DMS A Dynamic Message Sign that can be controlled by one

Operations Center at a time.

Factory A CORBA object that is capable of creating other CORBA

objects of a particular type. The newly created object will be
served from the same process as the factory object that creates it.

FMS Field Management Station through which the CHART II system

communicates with the devices in the field.

Graphical User Interface Part of a software application that provides a graphical interface

to its user.

HAR A radio transmitter used to broadcast traffic information to the

public.

Installable Module A software object that can be included in an application through

the configuration of the application.

ModemPort A type of Port that provides access to a modem.

FMS R1B2 Detailed Design 11/13/00 A-2

MULTI An NTCIP standard mark up language used to specify the
display of DMS messages.

MultiConverter A software utility object used to convert text to and from the

MULTI format.

Object Discovery A GUI mechanism in which the client periodically asks the

CORBA Trading Service to find objects of those types that are
of interest to the GUI, such as DMS, HAR, Plan etc.

Operations Center A center where one or more users may log in to operate the

CHART II system. Operations centers are assigned responsibility
for shared resources that are controlled by users who are logged
in at that operations center.

Operator A CHART II user that works at an Operations Center.

Port A CORBA object used to generically represent a single

communications resource available on a computer. Derived
interfaces define functionality specific to the type of
communications resource.

PortManager A CORBA object used by clients to gain access to Port objects.

The PortManager manages access to pre-configured Port objects
and allows ports to be shared amongst many clients.

ProtocolHandler A software object that contains code that is knowledgeable of the

protocol used to command a specific make and model of a
device.

Service Application A software application that can be configured to run one or more

service application modules and provides them basic services
needed to serve CORBA objects.

Service Application Module A software module that serves a related group of CORBA

objects and can be run within the context of a service
application.

System Version ObjectTeam/Cool:Jex term used to describe a logical grouping of

related design work products. Examples of system versions
created in support of this design include
FieldCommunicationsModule and DMSProtocols.

FMS R1B2 Detailed Design 11/13/00 A-3

SHAZAM The name given to a type of roadside sign which advises
motorists to tune to a radio station to hear traffic information
when beacons on the sign are flashing.

Sign see DMS

User A user is anyone who uses the CHART II system. A user can

perform different operations in the system depending upon the
roles they have been granted.

